
Step 1: Project Setup 

1. Create a new Laravel project using Composer. 

2. Use MySQL or PostgreSQL for your project and setup accordingly. 

3. Run your project from localhost (N.B: not from php artisan serve command) 

4. Create a public repository and push your first commit with proper message 

Step 2: Login 

1. Set up authentication using Laravel Breeze or Laravel Sanctum. 

2. Implement login & registration functionality with hashed passwords. 

3. Validate user inputs (email, password, etc.) using Form Request Validation. 

4. Push your second commit with proper message 

Step 3: Role Based Access Control(RBAC) 

1. Create roles and permissions tables using migrations. 

2. Seed database with roles: Admin and User. 

3. Assign roles to users (use a pivot table or direct assignment). 

4. Implement middleware to restrict access based on roles. 

5. Ensure only Admin can access a protected route (e.g., /admin/dashboard). 

6. The above procedure should be done by using Spatie Laravel-Permission package. 

7. Push your third commit with proper message 

Step 4: Simple Module 

1. Create a Product model, migration, and factory. 

2. Implement CRUD operations for products (Create, Read, Update, Delete) Using 

Eloquent ORM. 

3. Secure API using Laravel Sanctum. 

4. Ensure only authenticated users can create, update, and delete products. 

5. Implement pagination in the GET /products API. 

6. Use Form Request Validation to validate incoming data for product creation and 

updating (e.g., StoreProductRequest and UpdateProductRequest). 

7. Push your fourth commit with proper message  

React.js Frontend Assignment 



Objective: 

Develop a React.js frontend application that integrates with a Laravel backend, implementing 

authentication, role-based access control (RBAC), and product management functionalities. 

 

Task Requirements: 

Step 1: Project Setup 

1. Initialize a new React.js project using Vite or Create React App. 

2. Install required dependencies:  

o React Router (react-router-dom) for navigation. 

o Axios for API communication. 

o Tailwind CSS for styling. 

3. Set up an .env file to store API base URL securely. 

4. Push the initial commit to a public GitHub repository with a proper commit message. 

Step 2: Authentication System 

1. Implement login and registration pages with form validation. 

2. Authenticate users by sending API requests to the Laravel backend. 

3. Store the authentication tokensecurely in local storage after successful login. 

4. Redirect authenticated users to the dashboard. 

5. Push your second commit with a proper message. 

Step 3: Role-Based Access Control (RBAC) 

1. Retrieve the user role from the backend after login. 

2. Implement protected routes:  

o Only authenticated users should access the dashboard. 

o Only Admins should access the Admin Panel. 

3. Conditionally display UI elements based on user roles (e.g., Admin options should only 

be visible to Admin users). 

4. Use React Context API or state to manage authentication and roles. 

5. Push your third commit with a proper message. 



Step 4: Product Management Module 

1. Implement a Product Listing Page that fetches and displays paginated products. 

2. Allow authenticated users to:  

o Create new products using a form. 

o Update existing products (Only for authorized users). 

o Delete products (Only for authorized users). 

3. Implement form validation for product creation and updating. 

4. Display error messages for invalid inputs. 

5. Push your fourth commit with a proper message. 

Submission: 

Submit your GitHub repository link and database(also attach login credential) within 48 hours 

from the starting time.  

 

 

 


